China best CE Approved 110kw Atmospheric Inlet Pressure Discharge Pressure 200bar Natural Gas Piston Compressors with Best Sales

Product Description

                                   Reciprocating Piston Compressor
CE Approved 110KW Atmospheric Inlet Pressure Discharge Pressure 200Bar Natural Gas Piston Compressors

                                      ( Blue Font To View Hyperlink)
Our company specialize in making various kinds of compressors, such as:Diaphragm compressor,Piston compressor, Air compressors,Nitrogen generator,Oxygen generator ,Gas cylinder,etc. All products can be customized according to your parameters and other requirements.

This series of oil-free compressor is one of the first products produced by our factory in China. The product has the characteristics of low speed, high component strength, stable operation, long service life and convenient maintenance. This series compressor is in the form of unit. It integrates compressor, gas-liquid separator, filter, 2 position four-way valve, safety valve, check valve, explosion-proof motor and chassis. The utility model has the advantages of small volume, light weight, low noise, good sealing performance, easy installation, simple operation, etc.

Main components
1.  Motion system: crankshaft, piston connecting rod assembly, coupling, etc.
2.  Air distribution system: valve plate, valve spring, etc.
3. Sealing system: piston ring, oil seal, gasket, packing, etc.

4. Body system: crankcase, cylinder block, cylinder liner, cover plate, etc.
5. Lubrication system: lubricating oil pump, oil filter, pressure regulating valve, etc.;
6Safety and energy regulation systems: safety valves, energy regulation devices, etc.
Working principle of piston compressor
When the crankshaft of the piston compressor rotates, the piston will reciprocate through the transmission of the connecting rod, and the working volume formed by the inner wall of the cylinder, the cylinder head and the top surface of the piston will periodically change. When the piston of a piston compressor starts to move from the cylinder head, the working volume in the cylinder gradually increases. At this time, the gas flows along the intake pipe and pushes the intake valve to enter the cylinder until the working volume reaches the maximum. , The intake valve is closed; when the piston of the piston compressor moves in the reverse direction, the working volume in the cylinder is reduced, and the gas pressure is increased. When the pressure in the cylinder reaches and is slightly higher than the exhaust pressure, the exhaust valve opens and the gas is discharged from the cylinder , Until the piston moves to the limit position, the exhaust valve is closed. When the piston of the piston compressor moves in the reverse direction again, the above process repeats. In short, the crankshaft of a piston compressor rotates once, the piston reciprocates once, and the process of air intake, compression, and exhaust is realized in the cylinder, which completes a work cycle.
Advantages of piston compressor
1. The applicable pressure range of the piston compressor is wide, and the required pressure can be reached regardless of the flow rate;
2. The piston compressor has high thermal efficiency and low unit power consumption;
3. Strong adaptability, that is, a wide exhaust range, and is not affected by the pressure level, and can adapt to a wider pressure range and cooling capacity requirements;
4. Piston compressors have low requirements for materials, and use common steel materials, which is easier to process and lower in cost;
5. The piston compressor is relatively mature in technology, and has accumulated rich experience in production and use;
6. The device system of the piston compressor is relatively simple.

Note: In the unloading process, the compressor pressurizes the gas from the storage tank and then presses it into the tank car through the gas-phase pipeline, and presses the liquid from the tank car to the storage tank through the gas-phase differential pressure to complete the unloading process. When the gas phase is pressurized, the temperature of the gas phase will rise. At this time, forced cooling is not necessary, because if the gas phase is compressed and then cooled, it is easy to liquefy, and it is difficult to establish the pressure difference of the gas phase, which is not conducive to the replacement of the gas phase and the liquid phase. In short, it will cause the prolongation of the unloading process. If it is necessary to recover the residual gas, the cooler can be selected to forcibly cool the gas phase during the recovery operation, so as to recover the residual gas as soon as possible.The loading process is opposite to the unloading process.

Chemical Process Compressor Description 
Chemical process compressors refer to process reciprocating piston compressors used to compress various single or mixed media gases in petroleum and chemical processes, as well as chemical exhaust gas recycling systems. Its main function is to transport the medium gas in the reaction device and provide the required pressure to the reaction device. Features 1. Designed for specific process flow. 2. The whole machine is skid-mounted and advanced in structure. 3. The compressor types are: Z type, D type, M type. 4. The middle body of the slideway and the cylinder can be designed in different structural forms according to the process requirements.
Reference Technical parameters and specifications

  Model Volume flow(Nm3/h) Suction pressure(Mpa) Exhaust pressure (Mpa) Motor power(kw) Dimension (mm)
1 ZW-0.4/ 2-250 60 0.2 25 18.5 2800*2200*1600
2 ZW-0.81/ (1~3)-25 120 0.1~0.3 2.5 22 1000*580*870
3 DW-5.8/0.5-5 400~500 0.05 0.5 37 2000*1600*1200
4 DW-10/2 510 Atmospheric pressure 0.2 37 2000*1600*1200
5 DW-6.0/5 300 Atmospheric pressure 0.5 37 2000*1600*1200
6 DW-0.21/(20~30)-250 270 2~3 25 45 3200*2200*1600
7 ZW-0.16/60-250 480 6 25 45 3000*2200*1600
8 ZW-0.46 /(5~10)-250 200 0.5~1.0 25 45 3000*2200*1600
9 DW-1.34/2-250 208 0.2 25 55 3400*2200*1600
10 DW-0.6/24-85 720 2.4 8.5 55 2200*1600*1200
11 ZW-2.9/14.2-20 220 1.42 2 55 2200*1600*1200
12 VW-2.0/(2~4)-25 410 0.2~0.4 2.5 55 3400*2200*1600
13 DW-0.85/(3~4)-250 180 0.3~0.4 25 55 2400*1800*1500
14 DW-25-(0.2~0.3)-1.5 1620 0.02~0.03 0.15 75 2400*1800*1500
15 VW-8.0/0.3-25 540 0.03 2.5 90 2400*1800*1500
16 DW-6.8/0.05-40 200~400 0.005 4 90 2400*1800*1500

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 18 Months
Warranty: 18month
Lubrication Style: Oil-free
Cooling System: Air/Water Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Vertical
Customization:
Available

|

air compressor

What Is the Typical Lifespan of a Gas Air Compressor?

The typical lifespan of a gas air compressor can vary depending on several factors, including the quality of the compressor, its usage patterns, maintenance practices, and environmental conditions. However, with proper care and maintenance, a gas air compressor can last for many years. Here’s a detailed explanation of the factors that can affect the lifespan of a gas air compressor:

1. Quality of the Compressor:

The quality and construction of the gas air compressor play a significant role in determining its lifespan. Compressors made with high-quality materials, precision engineering, and robust components are generally more durable and can withstand heavy usage over an extended period.

2. Usage Patterns:

The usage patterns of the gas air compressor can impact its lifespan. If the compressor is used consistently and for extended periods, it may experience more wear and tear compared to compressors used intermittently or for lighter tasks. Heavy-duty applications, such as continuous operation with high-demand tools, can put more strain on the compressor and potentially reduce its lifespan.

3. Maintenance Practices:

Regular maintenance is crucial for extending the lifespan of a gas air compressor. Following the manufacturer’s recommended maintenance schedule, performing routine tasks like oil changes, filter cleaning/replacement, and inspection of components can help prevent issues and ensure optimal performance. Neglecting maintenance can lead to accelerated wear and potential breakdowns.

4. Environmental Conditions:

The operating environment can significantly impact the lifespan of a gas air compressor. Factors such as temperature extremes, humidity levels, presence of dust or debris, and exposure to corrosive substances can affect the compressor’s components and overall performance. Compressors used in harsh environments may require additional protection or specialized maintenance to mitigate these adverse conditions.

5. Proper Installation and Operation:

Proper installation and correct operation of the gas air compressor are essential for its longevity. Following the manufacturer’s guidelines for installation, ensuring proper ventilation, maintaining correct oil levels, and operating within the compressor’s specified capacity and pressure limits can help prevent excessive strain and premature wear.

Considering these factors, a well-maintained gas air compressor can typically last anywhere from 10 to 15 years or even longer. However, it’s important to note that this is a general estimate, and individual results may vary. Some compressors may experience shorter lifespans due to heavy usage, inadequate maintenance, or other factors, while others may last well beyond the expected lifespan with proper care and favorable conditions.

Ultimately, investing in a high-quality gas air compressor, adhering to recommended maintenance practices, and using it within its intended capabilities can help maximize its lifespan and ensure reliable performance for an extended period.

air compressor

What Is the Role of Air Receivers in Gas Air Compressor Systems?

Air receivers play a crucial role in gas air compressor systems by serving as storage tanks for compressed air. Here’s a detailed explanation:

1. Storage and Stabilization:

The primary function of an air receiver is to store compressed air generated by the gas air compressor. As the compressor produces compressed air, the air receiver collects and stores it. This storage capacity helps meet fluctuating demand in compressed air usage, providing a buffer between the compressor and the system’s air consumption.

By storing compressed air, the air receiver helps stabilize the supply to the system, reducing pressure fluctuations and ensuring a consistent and reliable flow of compressed air. This is particularly important in applications where the demand for compressed air may vary or experience peaks and valleys.

2. Pressure Regulation:

Another role of the air receiver is to assist in pressure regulation within the gas air compressor system. As compressed air enters the receiver, the pressure inside increases. When the pressure reaches a predetermined upper limit, typically set by a pressure switch or regulator, the compressor stops supplying air, and the excess air is stored in the receiver.

Conversely, when the pressure in the system drops below a certain lower limit, the pressure switch or regulator signals the compressor to start, replenishing the compressed air in the receiver and maintaining the desired pressure level. This cycling of the compressor based on pressure levels helps regulate and control the overall system pressure.

3. Condensate Separation:

During the compression process, moisture or condensate can form in the compressed air due to the cooling effect. The air receiver acts as a reservoir that allows the condensate to settle at the bottom, away from the outlet. The receiver often includes a drain valve at the bottom to facilitate the removal of accumulated condensate, preventing it from reaching downstream equipment and causing potential damage or performance issues.

4. Energy Efficiency:

Air receivers contribute to energy efficiency in gas air compressor systems. They help optimize the operation of the compressor by reducing the occurrence of short-cycling, which refers to frequent on-off cycling of the compressor due to rapid pressure changes. Short-cycling can cause excessive wear on the compressor and reduce its overall efficiency.

The presence of an air receiver allows the compressor to operate in longer and more efficient cycles. The compressor runs until the receiver reaches the upper pressure limit, ensuring a more stable and energy-efficient operation.

5. Air Quality Improvement:

Depending on the design, air receivers can also aid in improving air quality in the compressed air system. They provide a space for the compressed air to cool down, allowing moisture and some contaminants to condense and separate from the air. This can be further enhanced with the use of additional filtration and drying equipment installed downstream of the receiver.

In summary, air receivers play a vital role in gas air compressor systems by providing storage capacity, stabilizing compressed air supply, regulating system pressure, separating condensate, improving energy efficiency, and contributing to air quality control. They are an integral component in ensuring the reliable and efficient operation of compressed air systems across various industries and applications.

air compressor

Can Gas Air Compressors Be Used in Remote Locations?

Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:

1. Independence from Electrical Grid:

Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.

2. Mobility and Portability:

Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.

3. Fuel Versatility:

Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.

4. On-Site Power Generation:

In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.

5. Off-Grid Operations:

Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.

6. Emergency Preparedness:

Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.

7. Adaptability to Challenging Environments:

Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.

Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.

China best CE Approved 110kw Atmospheric Inlet Pressure Discharge Pressure 200bar Natural Gas Piston Compressors   with Best SalesChina best CE Approved 110kw Atmospheric Inlet Pressure Discharge Pressure 200bar Natural Gas Piston Compressors   with Best Sales
editor by CX 2024-04-19

Recent Posts