China Hot selling New Product Oxygen Booster Compressor Oxygen Gas Compressor for Filling Cylinders with Best Sales

Product Description

 

New Product Oxygen Booster Compressor Oxygen Gas Compressor for Filling Cylinders

Product Description

Oil-free piston oxygen compressor is the preferred choice when contamination-free, leak-tight oxygen compression is required. CHINAMFG oxygen compressor is designed to afford you high quality, high reliability, low maintenance and extended service intervals.

Based CHINAMFG our extensive experience in compressor technology, and our state-of-the-art engineering and manufacturing capabilities, we work with our customers to provide the optimum solution to satisfy their oxygen gas compression needs.

We- Cape CHINAMFG can provide both standard and custom designed oxygen compressors with a comprehensive assortment of options. We furnish a wide range of equipment from basic units to turnkey, skid-mounted and computer controlled systems.

Our oxygen compressors range in size from 3 hp to 200 hp (3 to 150 Kw), discharge pressures vary from 50 psig to 3000 psig (3 barg to 300 barg).
 

Product Parameters

150bar/2200PSI Four Stage Compression Oxygen Compressor
Model Flow rate Inlet
Pressure
Discharge
pressure
Power Rate Weight Dimension
(mm)
Noise
GOW-3/4-150 1~3m³/h 3~4bar 150bar 1.5~3KW 140kg 850*640*680 ≤80db
GOW-5/4-150 5m³/h 3~4bar 150bar 3kw 320kg 1000*800*1100 ≤80db
GOW-6/4-150 5m³/h 3~4bar 150bar 3kw 320kg 1000*800*1100 ≤80db
GOW-10/4-150 10m³/h 3~4bar 150bar 5.5KW 320kg 1000*800*1100 ≤80db
GOW-12/4-150 12m³/h 3~4bar 150bar 5.5KW 320kg 1000*800*1100 ≤80db
GOW-15/4-150 15m³/h 3~4bar 150bar 11KW 960kg 1650*950*1470 ≤80db
GOW-20/4-150 20m³/h 3~4bar 150bar 11KW 960kg 1650*950*1470 ≤80db
GOW-30/4-150 30m³/h 3~4bar 150bar 11KW 960kg 1650*950*1470 ≤80db
GOW-40/4-150 40m³/h 3~4bar 150bar 11KW 960kg 1650*950*1470 ≤80db
GOW-45/4-150 45m³/h 3~4bar 150bar 15KW 960kg 1650*950*1470 ≤80db
GOW-50/4-150 50m³/h 3~4bar 150bar 15KW 960kg 1650*950*1470 ≤80db
GOW-60/4-150 60m³/h 3~4bar 150bar 18.5KW 960kg 1650*950*1470 ≤80db
GOW-70~150/4-150 70~150m³/h 3~4bar 150bar 30~45KW 2000kg 2100*1100*1600 ≤80db
200bar/3000PSI Four Stage Compression Oxygen Compressor
GOW-3/4-200 1~3m³/h 3~4bar 200bar 1.5~3KW 140kg 850*640*680 ≤80db
GOW-5/4-200 5m³/h 3~4bar 200bar 3KW 320kg 1000*800*1100 ≤80db
GOW-10/4-200 10m³/h 3~4bar 200bar 5.5KW 320kg 1000*800*1100 ≤80db
GOW-12/4-200 12m³/h 3~4bar 200bar 5.5KW 320kg 1000*800*1100 ≤80db
GOW-15/4-200 15m³/h 3~4bar 200bar 11KW 960kg 1650*950*1470 ≤80db
GOW-20/4-200 20m³/h 3~4bar 200bar 11KW 960kg 1650*950*1470 ≤80db
GOW-30~45/4-200 30m³/h 3~4bar 200bar 15KW 960kg 1650*950*1470 ≤80db
GOW-50~60/4-200 50~60m³/h 3~4bar 200bar 18.5KW 960kg 1650*950*1470 ≤80db
GOW-70~120/4-200 80~120m³/h 3~4bar 200bar 30~45KW 2000kg 2100*1100*1600 ≤80db

 

After Sales Service

Actual use cases

 

 

Packaging & Shipping

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Overseas Service Available
Warranty: 18months
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Series Arrangement
Cylinder Position: Vertical
Samples:
US$ 18200/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How Do You Troubleshoot Common Issues with Gas Air Compressors?

Troubleshooting common issues with gas air compressors involves identifying and addressing potential problems that may arise during operation. Here’s a detailed explanation of the troubleshooting process:

1. Start with Safety Precautions:

Prior to troubleshooting, ensure that the gas air compressor is turned off and disconnected from the power source. Follow proper safety procedures, such as wearing appropriate personal protective equipment (PPE), to avoid accidents or injuries.

2. Check Power Supply and Connections:

Verify that the compressor is receiving power and that all electrical connections are secure. Inspect the power cord, plug, and any switches or controls to ensure they are functioning properly. If the compressor is equipped with a battery, check its charge level and connections.

3. Check Fuel Supply:

For gas air compressors that use gasoline or propane, ensure that there is an adequate fuel supply. Check the fuel tank level and verify that the fuel shut-off valve is open. If the compressor has been sitting idle for an extended period, old or stale fuel may cause starting issues. Consider draining and replacing the fuel if necessary.

4. Inspect Air Filters:

Dirty or clogged air filters can restrict airflow and affect the compressor’s performance. Check the intake air filters and clean or replace them as needed. Clogged filters can be cleaned with compressed air or washed with mild detergent and water, depending on the type of filter.

5. Check Oil Level and Quality:

If the gas air compressor has an engine with an oil reservoir, verify the oil level using the dipstick or oil level indicator. Insufficient oil can lead to engine damage or poor performance. Additionally, check the oil quality to ensure it is clean and within the recommended viscosity range. If needed, change the oil following the manufacturer’s guidelines.

6. Inspect Spark Plug:

If the gas air compressor uses a spark plug ignition system, inspect the spark plug for signs of damage or fouling. Clean or replace the spark plug if necessary, following the manufacturer’s recommendations for gap setting and torque.

7. Check Belts and Pulleys:

Inspect the belts and pulleys that drive the compressor pump. Loose or worn belts can cause slippage and affect the compressor’s performance. Tighten or replace any damaged belts, and ensure that the pulleys are properly aligned.

8. Listen for Unusual Noises:

During operation, listen for any unusual or excessive noises, such as grinding, rattling, or squealing sounds. Unusual noises could indicate mechanical issues, loose components, or improper lubrication. If identified, consult the compressor’s manual or contact a qualified technician for further inspection and repair.

9. Consult the Owner’s Manual:

If troubleshooting steps do not resolve the issue, refer to the compressor’s owner’s manual for specific troubleshooting guidance. The manual may provide additional troubleshooting steps, diagnostic charts, or recommended maintenance procedures.

10. Seek Professional Assistance:

If the issue persists or if you are unsure about performing further troubleshooting steps, it is recommended to seek assistance from a qualified technician or contact the manufacturer’s customer support for guidance.

Remember to always prioritize safety and follow proper maintenance practices to prevent issues and ensure the reliable performance of the gas air compressor.

air compressor

How Do Gas Air Compressors Contribute to Energy Savings?

Gas air compressors can contribute to energy savings in several ways. Here’s a detailed explanation:

1. Efficient Power Source:

Gas air compressors are often powered by gasoline or diesel engines. Compared to electric compressors, gas-powered compressors can provide higher power output for a given size, resulting in more efficient compression of air. This efficiency can lead to energy savings, especially in applications where a significant amount of compressed air is required.

2. Reduced Electricity Consumption:

Gas air compressors, as standalone units that don’t rely on electrical power, can help reduce electricity consumption. In situations where the availability of electricity is limited or expensive, using gas air compressors can be a cost-effective alternative. By utilizing fuel-based power sources, gas air compressors can operate independently from the electrical grid and reduce dependence on electricity.

3. Demand-Sensitive Operation:

Gas air compressors can be designed to operate on demand, meaning they start and stop automatically based on the air requirements. This feature helps prevent unnecessary energy consumption during periods of low or no compressed air demand. By avoiding continuous operation, gas air compressors can optimize energy usage and contribute to energy savings.

4. Energy Recovery:

Some gas air compressors are equipped with energy recovery systems. These systems capture and utilize the heat generated during the compression process, which would otherwise be wasted. The recovered heat can be redirected and used for various purposes, such as space heating, water heating, or preheating compressed air. This energy recovery capability improves overall energy efficiency and reduces energy waste.

5. Proper Sizing and System Design:

Selecting the appropriate size and capacity of a gas air compressor is crucial for energy savings. Over-sizing a compressor can lead to excessive energy consumption, while under-sizing can result in inefficient operation and increased energy usage. Properly sizing the compressor based on the specific air demands ensures optimal efficiency and energy savings.

6. Regular Maintenance:

Maintaining gas air compressors in good working condition is essential for energy efficiency. Regular maintenance, including cleaning or replacing air filters, checking and repairing leaks, and ensuring proper lubrication, helps optimize compressor performance. Well-maintained compressors operate more efficiently, consume less energy, and contribute to energy savings.

7. System Optimization:

For larger compressed air systems that involve multiple compressors, implementing system optimization strategies can further enhance energy savings. This may include employing advanced control systems, such as variable speed drives or sequencers, to match compressed air supply with demand, minimizing unnecessary energy usage.

In summary, gas air compressors contribute to energy savings through their efficient power sources, reduced electricity consumption, demand-sensitive operation, energy recovery systems, proper sizing and system design, regular maintenance, and system optimization measures. By utilizing gas-powered compressors and implementing energy-efficient practices, businesses and industries can achieve significant energy savings in their compressed air systems.

air compressor

How Do You Choose the Right Size Gas Air Compressor for Your Needs?

Choosing the right size gas air compressor is crucial to ensure optimal performance and efficiency for your specific needs. Selecting a compressor that is too small may result in insufficient airflow or pressure, while choosing one that is too large can lead to unnecessary energy consumption and higher costs. Here’s a detailed explanation of the factors to consider when choosing the right size gas air compressor:

1. Required Airflow:

Determine the airflow requirements of your applications. Consider the tools, equipment, or processes that will be powered by the compressor and their respective airflow demands. The required airflow is typically measured in cubic feet per minute (CFM). Determine the total CFM required, taking into account any simultaneous or intermittent tool usage.

2. Operating Pressure:

Identify the operating pressure required for your applications. Different tools and systems have specific pressure requirements, measured in pounds per square inch (PSI). Ensure that the compressor you choose can deliver the required pressure consistently.

3. Duty Cycle:

Consider the duty cycle, which refers to the amount of time the compressor will be in operation within a given period. Some applications may require continuous operation, while others involve intermittent or occasional use. Take into account the duty cycle to ensure that the compressor can handle the expected workload without overheating or experiencing excessive wear.

4. Tank Size:

The tank size of a gas air compressor determines its ability to store compressed air and provide a steady supply. A larger tank can help accommodate fluctuations in demand and reduce the frequency of the compressor cycling on and off. Consider the required storage capacity based on the specific applications and the desired balance between continuous operation and storage capacity.

5. Power Source:

Gas air compressors can be powered by different fuels, such as gasoline, diesel, natural gas, or propane. Consider the availability and cost of the fuel options in your location, as well as the specific requirements of your applications. Choose a compressor that is compatible with a power source that suits your needs.

6. Portability:

Determine if portability is a requirement for your applications. If you need to move the compressor to different job sites or locations, consider a portable model with features like wheels, handles, or a compact design that facilitates easy transportation.

7. Noise Level:

If noise is a concern in your working environment, consider the noise level of the compressor. Gas air compressors can vary in their noise output, and certain models may have noise-reducing features or insulation to minimize sound emissions.

8. Manufacturer Recommendations:

Consult the manufacturer’s recommendations and guidelines for selecting the appropriate compressor size for your specific needs. Manufacturers often provide guidelines based on the anticipated applications, airflow requirements, and other factors to help you make an informed decision.

By considering these factors and carefully assessing your specific requirements, you can choose the right size gas air compressor that meets your airflow, pressure, duty cycle, and other operational needs. It’s advisable to consult with industry professionals or compressor experts for guidance, especially for complex or specialized applications.

China Hot selling New Product Oxygen Booster Compressor Oxygen Gas Compressor for Filling Cylinders   with Best SalesChina Hot selling New Product Oxygen Booster Compressor Oxygen Gas Compressor for Filling Cylinders   with Best Sales
editor by CX 2024-02-20

Recent Posts